
Module Seven

- 1 - January 1995

Architecture and Design

This module describes the architectural features that support the security
aspects of a trusted system. Some of these features must be present inthe
architecture of a system in order for it to enforce certain aspects of thesystem’ s
security policy. The architecture requirements from the TCSEC are given and
some actual architectural features are described.

Module Learning Objectives

The material presented in this module describes architectures that support the
mechanisms described in Module 6. Upon completion of this module, the
student should:

1. Be familiar with various architectural features that can be used to
support the enforcement of a trusted system’s security policy.

2. Understand the TCSEC architecture requirements.

3. Understand how multistate machines work and how they support the
system’s security policy.

4. Understand the security aspects of file system and memory
management.

5. Understand how the TCB and its hardware devices are protected by the
architecture.

6. Be familiar with the notions of modularity, data hiding, abstraction,
layering and least privilege. Be aware of how they affect the ability to
examine the TCB and verify that it correctly enforces the securitypolicy.

Overview

With regards to architecture, the TCSEC requires mechanisms to support the
enforcement of the security policy by the TCB, as well as the use of design
techniques that enhance the understandability of the TCB and increase the
level of assurance that the TCB operates correctly. The architecture
requirements flow from the reference monitor requirements for the TCB tobe
1) tamperproof, so that non-TCB subjects cannot interfere with the correct
operation of the TCB, 2) impossible to bypass, so that non-TCB subjects cannot
simply go around the TCB and violate the security policy, and 3) verifiable, so
that developers and evaluators can examine the TCB and determine that it
correctly enforces the security policy.

TCBs at B2 or above are required to have a well-defined user interface. The
interface must be completely described so that a top-levelspecification
(descriptive (DTLS) and/or formal (FTLS)) can bewritten and shown to be an
accurate representation of the interface. Verification arguments about how the
TCB implements the reference monitor concept and why the TCB is complete,
tamper-proof, and verifiable are then made with respect to the DTLS/FTLS.

Memory Protection, I/O Access Control, and Asynchronous Event Handling

The architecture of the TCB should provide support for memory protection.
This is necessary to protect processes from each other, as well as to protect the

Module Seven

- 2 - January 1995

system integrity by isolating the TCB code and data objects(preventing
interference or tampering with the TCB code and data by non-TCBsubjects).
There should also be support for ensuring that the TCB can mediate accessto
I/O devices. This is necessary to ensure that the TCB can enforce the security
policy with respect to I/O devices. There must also be support for the secure
handling of asynchronous events such as interrupts and traps.

Execution Domains

An approach by which the TCB protects its code and data and also ensures that
it controls the I/O devices is to use execution domains. The TCB must maintain
a domain for its own execution that protects it from externalinterference or
tampering. In a two-state machine, a process may run in either of two domains,
privileged or unprivileged. A process running in the privileged modewill be
allowed by the hardware to use privileged instructions (e.g., I/O instructions)
and to gain access to privileged sections of memory (e.g., TCB code and data)
that are denied to processes running in non-privileged mode. Some systems,
not having privileged I/O instructions, protect devices by only allowing
privileged processes to access the address space containing the devices.

The two-state machine is an example of hierarchical execution domains, where
privileged subjects get access to everything available to unprivileged subjects
as well as resources denied to unprivileged subjects. An architecture where
there are more than two hierarchical execution domains is called a ring
architecture because it is commonly pictured as a set of concentric ringswith
the most privileged ring in the center. Each ring has access to its own resources
and to the resources available to the rings outside it but no access to the
resources of the more privileged rings inside it.

Process Management

The architecture of a TCB must also provide mechanisms for process
management. TCBs at B1 or above must have the ability to isolate processes
from each other. This is necessary to be able to enforce the security policy with
respect to communication between subjects. The TCBs at B1 or above must
have some control over process scheduling because a subject that knows about
the state of processes at all different levels, and is able to modify their state,
must be trusted. TCBs at B1 or above must be able to control aprocess's
address space (i.e., to which objects the process has access). Interpretation C1-
CI-04-85 [INTERP94] explains that although most examples of process
isolation have relied upon a hardware-based architecture, a properly
implemented software architecture would satisfy the B1 requirement.

Typically, the address space of a process is limited to no more than a few
hundred objects at a time. Therefore, the process can use a small set of
reusable names to identify the objects in its address space. For example, a
process must know the large system-wide names of the files to which it wants
to request access, but when the access is granted (adding a file to the process's
address space), the file is assigned a file descriptor which is used to
subsequently identify the file when reading or writing it.

Module Seven

- 3 - January 1995

In some systems, where code and/or data is shared between processes, an issue
arises in resolving references to shared objects. An example of this might be
the need to make calls to a shared run-time library located in aseparate
segment. In some systems, these references are resolved at compile-time. In
other systems, the references are resolved at run-time, which is called binding.
Some systems resolve all the references by invoking the binder or linkerwhen
the process is loaded, but before control is transferred to its mainprocedure .
Other systems (e.g., Multics) have mechanisms for invoking the binder to
resolve each unresolved reference as it is actually needed. This last approach
is called dynamic binding.

Memory Management

Some types of hardware support for memory management are commonly used
to support the TCB's enforcement of the security policy. In segmented (or
paged) systems, the TCB can control which segments (or pages) to which a
process is granted access, and can trust the hardware to limit the process to
only those segments (or pages) of memory. Thus, the lower (hardware) layer
enforces the access decision after mediation, which avoids having the TCB
software mediate every memory reference made by each untrusted process.
TCBs at B2 or above are required to use hardware features such as
segmentation or paging to support separate objects with hardware-enforced
modes of access (viz., read, write, execute, etc.).

Direct memory access I/O introduces some complexities to the enforcementof
the security policy. For example, if a process makes an I/O request to read into
a segment, and the segment is removed from the process's address spaceprior
to the completion of the I/O operation, then the device might write to anarea
of memory outside of the address space of the process on whose behalfit's
working. TCBs at C2 or above must prevent this situation, because they are
required to isolate all resources being protected. TCBs at B1 or aboveare
further required to control the address spaces of all processes.

Another area of memory management that must be controlled by the TCB is
the use of caches. Of particular interest are caching schemes used by
multilevel processes that communicate with untrusted processes withdifferent
security clearances. The multilevel process must be examined to show that the
untrusted processes cannot obtain information about each other based on the
contents of the cache. Special analysis would be required to assess the security
implications of uncommon caching schemes such as associative memory, where
the items in the cache are addressed by content rather than location.

If the TCB executes in a multiprocessor environment, the architecture must
provide mechanisms for objects to be shared between the processors. If there
is shared memory, then there must be a means for the processors to keep
consistent descriptor tables, or maps of the shared memory. A common
mechanism to support this is to use memory locking instructions that read and
write in one atomic hardware operation.

Module Seven

- 4 - January 1995

Modularity, Layering, Data Abstraction, and Complexity Minimization

The structure of the TCB and the design techniques used to develop it play an
important part in determining the level of assurance that the TCBcorrectly
enforces the security policy. TCBs at B2 or above must be divided into well-
defined modules (with data hiding being a required criterion of module
development for systems at B3 or above). It is important to rememberthat
modularity requirements apply to the entire TCB. In particular, the trusted
processes and the libraries that are linked into the trusted processesmust also
meet the same standards as the security kernel. Although a requirementfor
complexity minimization is not imposed until B3, there has been adecision
made that the TCB for B2 systems may not contain extraneous (dead) code.
This has been further interpreted to allow some “unused” code; such as a
service provided by a type manager which turns out to not need to be exercised
by the actual TCB implementation. Another decision that has not yetbeen put
in the form of an official Interpretation is the decision that themodularity
standards must also be met by any unused code that is linked into the TCB.

The concept of layering is required at B3 or above, where 1) layers of the TCB
know about the interfaces and depend on the services of layers below, but know
nothing about and do not depend on the correct functioning of the layers above,
2) each layer of the TCB is protected from tampering by the layers above, and
3) layers cannot violate the portions of the security policy enforced by thela yers
below, is also a required design technique in the development of TCBs at B3 or
above. Layering not only facilitates the verification of the correctness of the
TCB by allowing examination of one layer at a time, but it also simplifies the
RAMP by allowing the higher layers to be modified (or perhaps even "chopped
off" and replaced) for new releases without the need to redesign(or reverify) the
lower layers.

The concept of data abstraction is also required in the design of TCBs at B3 or
above. For example, the design might make use of a stack object, with the
operations PUSH and POP, so that the use of the stack is easier to understand
than if the design described an array of words and a pointer and the algorithms
used to temporarily store words in the array.

TCBs at B3 or above must also enforce the concept of complexity minimization
in their design. Significant system engineering must be directed toward
minimizing the complexity of the TCB and excluding modules from the TCB
that are not protection-critical. This effort is necessary to enable theevaluators
to more thoroughly examine and understand the TCB.

Although layering, abstraction and data hiding are not required until B3, they
are good design techniques for any large system development. Because these
architectural features aid in the understandability and maintainability ofthe
system, their use would surely facilitate the evaluation of a TCB at anyc lass,
and simplify its subsequent RAMP effort. Complexity minimization wouldalso
facilitate the evaluation of a system at any class, but is seldom done for systems
requiring less than a B3 rating because the process of excluding non-
protection-critical functionality from the TCB has the effect ofsignificantly
increasing the complexity of the system outside of the TCB.

Module Seven

- 5 - January 1995

Least Privilege

The least privilege principle (LPP) requires that every subjectmust operate
with the minimum set of privileges necessary to accomplish its task. TCBs at
B2 or above must enforce the LPP. The LPP is both a design technique for the
architecture of the TCB, and a rule to be enforced by the TCB on non-TCB
processes. As a design criterion for the TCB, it requires that the TCB not
assign tasks to TCB subjects with more privilege than necessary toaccomplish
the task (e.g., not assign a task to a multilevel process that does not require
reading and writing of objects with a range of sensitivities). Anexample of a
LPP rule enforced by some systems on their users is that a user can bean active
member of only one group at a time, and must switch out of the current group
and into a second group to access files only accessible to members ofthe second
group (as opposed to allowing the user to be an active member of bothgroups
at the same time).

The LPP has been one of the most frequently misunderstood requirementsfor
B2 and above systems. The two most common associations made with the LPP
are the separation of administrative roles and the decomposition of theUNIX
"superuser" role. Unfortunately, those two aspects do not completely cover the
full scope of the LPP requirement. The LPP is intended to limit thedamage
that can result from accident, error, or unauthorized use. It is imposed as a
requirement on individual subjects -- not users or programs. One of the
objectives of adhering to the LPP is that any individual responsible for
implementing, reviewing, or maintaining the TCB code must be able to
determine the privileges that will be in effect at each point in the code and the
potential impact of making any alterations to the code or set ofprivileges in
effect at that point in the code.

Although there have not been any announced Interpretations of the LPP, there
have been some decisions made for specific evaluations stating that
implementations which associate privileges with specific trusted programs
being executed on behalf of specific trusted users would be unlikelyto meet the
full LPP requirement unless the systems have the capability to further restrict
the scope of a privilege. The technique used for implementing this fine a
granularity of control over privilege is often referred to as "privilege
bracketing.”

The intent of privilege bracketing is to limit the scope of the potential effect of
a privilege to as small a code segment as possible. The most common
implementation of privilege bracketing is to identify each of the specific
instances of system calls that will require the use of privileges, enable the
appropriate privileges immediately before making the identified systemcall,
and then disable the privilege immediately upon returning from thesystem
call. As a result, most of the code for a trusted subject executeswithout any
privileges enabled. There have been exceptions made to bracketing at the
system call level to allow for the use of public libraries and certainhighly
specialized privileges.

Module Seven

- 6 - January 1995

Relevant Trusted Product Evaluation Questionnaire Questions

2.3 HARDWARE ARCHITECTURE

If this evaluation is for a family of hardware, the following questions should be
answered for each member of the hardware family. You may choose to answer
each question for each member of the family, or answer each question for a
baseline family member and point out the difference for each of the remaining
family members.

C1:

1. Provide a high-level block diagram of the system. The diagram
should at least depict various Central Processor Units (CPUs),
memory controllers, memory, I/O processors, I/O controllers, I/O
devices (e.g., printers, displays, disks, tapes, communications
lines) and relationship (both control flow and data flow) among
them.

2. (a) Describe the portions of the system (if any) whichcontain
microcode. (b) How is this microcode protected and loaded?

3. (a) Provide a list of privileged instructions for your hardware. (b)
Provide a brief description of each privileged instruction.

4. For each privileged instruction, provide the privileges required to
execute the instruction. (Examples of privileges include the
machine state, the executing ring/segment/domain/privilege
level, physical memory location of the instruction, etc.)

5. How does the process address translation (logical/virtual to
physical) work in your system?

6. (a) How does I/O address translation work for the Direct Memory
Access (DMA) controllers/devices? (b) Identify if theaddress
translation is done through the memory address translation unit
or if the logic is part of the controller. (c) How are theaddress
translation maps and/or tables initialized?

7. Describe the hardware protection mechanisms provided by the
system.

8. Describe what hardware mechanisms are used to isolate the TB
from untrusted applications.

9. (a) What are the machine/processor states supported by the
system> (b) How are the states changed? (c) What datastructures
are saved as part of the processor state?

10. List all the (a) interrupts and (b) traps (hardware andsoftware).
(c) How are they serviced by the system?

B1:

11. Provide a high-level block diagram of a CPU. The diagram should
explain the relationship among the elements such as: Instruction
Processor, Microsequencer, Microengine, Memory, Cache,

Module Seven

- 7 - January 1995

Memory Mapping or Address Translation Unit, I/O devices and
interfaces.

12. Describe the hardware isolation mechanisms for the process
memory (e.g., rings, segments, privilege levels).

13. (a) Provide a description of the process address space. (b)When
and (c) how is it formed? (d) How does the software use this
mechanism, if it does at all?

2.4 SOFTWARE

The TCB software consists of the elements that are involved in enforcing the
system security policy. Examples of TCB elements include: kernel, interrupt
handlers, process manager, I/O handlers, I/O manager, user/process interface,
hardware and command languages/interfaces (for system generation, operator,
administrator, users, etc.). The security kernel is the hardware, firmware and
software elements of the TCB that are involved in implementing the reference
monitor concept, i.e., the ones that mediate all access to objects by subjects.

C1:

3. Describe the hardware ring/domain/privilege level/memory
segment / physical location where each TCB element resides.

4. Describe the hardware ring/domain/privilege level/memory
segment / physical location where the user processes reside.

8. (a) List the process states and (b) briefly state conditionsunder
which transition from one state to another occurs.

9. Briefly describe process scheduling.

10. Describe all interprocess communications mechanisms.

11. (a) Describe the file management system. This should include the
directory hierarchy, if any, directory and file attributes. (b)Also
identify all system directories and files, and (c) their access
attributes.

12. How are (a) I/O devices and (b) their queues (if any)managed?

13. How are the (a) batch jobs and (b) their queues managed?

14. What software engineering tools and techniques were used for the
TCB design and implementation?

C2:

15. Describe the interfaces (control and data flow) among the TCB
elements.

16. Describe the interfaces between the kernel and the rest of the
TCB elements.

17. Describe how the process states are manipulated by the TCB.

18. (a) Describe the data structures for a process context. Describe
both (b) hardware and (c) software mechanisms used to
manipulate/switch the process context.

Module Seven

- 8 - January 1995

B1:

19. (a) List software mechanisms that are used to isolate and protect
user processes. (b) Provide a brief description of eachmechanism.

20. (a) Describe various elements of the process address space and(b)
their location in terms of ring/domain/privilege level/segment/
physical memory.

B2:

22. How was the modularity requirement achieved and
implemented?

24. (a) Is the TCB layered? (b) If yes, how many layers are inthe
TCB? Provide a brief description of (c) modules and (d)functions
in each layer. (e) How are the lower layers protected fromhigher
layers?

B3:

25. How does the architecture limit or restrict the ability of untrusted
code to exploit covert channels?

26. How is the least privilege required achieved and implemented?

28. How was the data abstraction and information hiding
requirement achieved and implemented?

2.13 OTHER ASSURANCES

C1:

7. (a) Does the system have a degraded mode of operation? (b)What
can cause this to occur? (c) How long can the system keeprunning
in this mode? (d) How does an operator get the system back tofull
operation? (e) What security related services are provided in the
degraded mode? (f) What security related services are not
provided?

B3:

14. (a) How does the system recovery work? What system resources
(e.g., memory, disks blocks, files) are protected (b) priorto and (c)
during the system recovery? (d) How are they protected? (e)
What resources are not protected?

Required Readings

TCSEC85 National Computer Security Center, Department of Defense
Trusted Computer System Evaluation Criteria, DoD 5200.28-
STD, December 1985.

Sections 2.1.3.1.1, 2.2.3.1.1, 3.1.3.1.1, 3.2.3.1.1, 3.3.3.1.1 and
4.1.3.1.1 describe the system architecture requirements, which
are summarized on page 105.

INTERP94 National Computer Security Center, The Interpreted TCSEC
Requirements, (quarterly).

Module Seven

- 9 - January 1995

The following Interpretation is relevant to system architecture:

C1-CI-04-85 System Architecture

Gasser88 Gasser, M., Building a Secure Computer System, Van Nostrand
Reinhold Co., N.Y., 1988.

Chapter 4 gives an introduction to system structures, including
reference monitors. Chapter 8 discusses hardware security
mechanisms such as process support, memory protection,
execution domains, I/O access control, and multiprocessor
support. Chapter 10 discusses the security kernel architecture
and implementation strategies. Chapter 11 discusses operating
system issues such as layering, protected subsystems, and secure
file systems. All four should be read in their entirety. Section 5.4
should be read for an introduction to the concept of least privilege.

Arnold92 Arnold, J.L. et. al., “Assessing Modularity in Trusted Computing
Bases,” Proceedings of 15th National Computer Security
Conference, Vol 1, pp. 44-56, October 1992

This paper summarizes the findings of a working group that was
established to define and clarify modularity criterion contained
within the System Architecture requirement for Class B2 of the
TCSEC.

Intel83 Intel Corporation, Intel iAPX 286 Operating Systems Writer's
Guide, 1983.

Chapter 1, pp. 1-1 to 1-8 and pp. 2-1 to 2-20, provides an
introduction to the notions of non-circumventability and isolation
of a reference monitor built on the iAPX 286 architecture. Topics
covered include: asynchronous event handling, memory
protection, execution domains, ring architectures, and memory
management.

Parnas72 Parnas, D.L., “On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM, Vol. 15, No.
12, pp. 1053-1058, December 1972.

This paper should be read in its entirety. It illustrates the notions
of modularity and data hiding necessary to design software (e.g.,
TCB software) that is understandable.

Saltzer78 Saltzer, J., “Naming and Binding of Objects,” in Operating
Systems -- An Advanced Course, lecture notes in Computer
Science, Vol. 105, Appendix A of Chapter 3.A, Springer Verlag,
1978.

This appendix illustrates the notions of naming and binding
through a case study of the Multics architecture of shared-object
addressing. The chapter this appendix came from is listed in the
other readings for this module.

Module Seven

- 10 - January 1995

Supplemental Readings

Hecht87 Hecht, M., et. al., “UNIX without the Superuser,” USENIX
Conference Proceedings, pp. 243-256, June 1987.

This paper presents two distinct, but related ideas. First, it shows
how the system (i.e., superuser) privilege can, and should, be
partitioned into specific privileges for each TCB action to help
enforce least privilege. Second, it shows how the roles of system
administration can be partitioned in a power hierarchy that
balances the security administrator role against that of the
auditor.

Knowles87 Knowles, F. and Bunch, S., “A Least Privilege Mechanism for
UNIX,” Proceedings of the 10th National Computer Security
Conference, pp. 257-262, September 1987.

This paper describes a privilege control mechanism for the UNIX
OS. The mechanism is intended to satisfy the B2 requirement of
least privilege, and to provide fine-grained control over access by
users to services and objects. The mechanism is largely
independent of other security-related features and is useful as an
incremental addition to a less secure UNIX.

Schroed77 Schroeder, M.D., et al, “Multics Kernel Design Project,”
Proceedings of the Sixth ACM Symposium on Operating System
Principles, November 1977.

This paper provides a good discussion of layering issues as
encountered in the kernelization of Multics.

Other Readings

Bondi89 Bondi, J.O. and Branstad, M.A., “Architectural Support of Fine-
Grained Secure Computing,” Proceedings of the 5th IEEE
Computer Security Applications Conference, pp. 121-130,
December 1989.

This article outlines an approach to incorporating a large portion
of the security policy enforcement into the architecture of the
hardware component of the TCB.

Smith86 Smith, T.A., “User Definable Domains as a Mechanism for
Implementing the Least Privilege Principle,” Proceedings of 9th
National Computer Security Conference, pp. 143-148, September
1986.

User definable domains, as developed in this paper, allow the
principle of least privilege to be implemented completely, thus
providing users with significantly greater protection against the
threat of Trojan Horses and viruses.

